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1. Introduction

The equation of motion for a linear dynamic system is given by

M .Xþ KX ¼ F; ð1Þ

where M and K are symmetric mass and stiffness matrices, respectively, X is the displacement
vector and F is the external excitation. For simplicity, damping is not considered here. If the
natural frequencies and mode shapes of the system are known, using the linear transformation

X ¼ PY; ð2Þ

where P is the mode shape matrix whose columns are the normalized modal vectors:

P ¼ U1 U2 ? UM

� �
; ð3Þ

replacing the physical displacement vector X in Eq. (1) and pre-multiplying Eq. (1) by the
transpose of the mode shape matrix result in

.Yþ ½o2�Y ¼ PTF; ð4Þ

where Y is the modal displacement vector and ½o2� is a diagonal matrix composed of the squared
natural frequencies of the system:

½o2� ¼

o21
o22

&

o2M

2
6664

3
7775: ð5Þ
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Eq. (4) is decoupled in the modal co-ordinates and can be written as

.yn þ o2nyn ¼ fn; n ¼ 1; 2;y;M: ð6Þ

Working out each modal displacement, yn; and using the linear transformation by Eq. (2), the
physical response X to the external excitation F is obtained. The above modal analysis method is
widely used for response calculations.
If the system’s initial velocity or displacement is non-zero, they have to be transformed from the

physical co-ordinates X into the modal co-ordinates Y in order to give the initial conditions for yn

calculation. If the number of the modal vectors in the mode shape matrix P is equal to the order of
the system, i.e., M ¼ N; the initial velocity and displacement in the modal co-ordinates can be
determined by formulae

’Y0 ¼ P�1 ’X0 and Y0 ¼ P�1X0: ð7; 8Þ

However, if the modal vectors in matrix P are incomplete, i.e., MoN; Eqs. (7) and (8) cannot
be used for the initial condition transformation because the mode shape matrix P now is not an
N � N matrix, instead it is an N � M matrix, and its inverse matrix does not exist.
In practice, not all modes of a dynamic system need to or can be calculated, especially for large

structures. In most cases, only the vibration modes in a specific frequency region are calculated
and used for response calculation. Thus, the initial condition transformation from the physical
co-ordinates to the modal co-ordinates by use of incomplete modes needs to be studied.

2. Initial condition transformation between two systems

The modal analysis method actually substitutes a modal system for the physical system to
calculate vibration response. If the mode shapes are fully calculated and used for the system
transformation between the physical and modal co-ordinates, the modal system is exactly equal to
the physical system. If the mode shapes are partially calculated and used for the system
transformation, the modal system is an approximation of the physical system. The key point is
how to reduce the errors caused by the approximation when transforming the initial conditions
between the two co-ordinates. One methodology for doing this is to minimize the distance
between the two velocities and between the two displacements from the physical and modal
co-ordinates, i.e., between ’X0 and P ’Y0 and between X0 and PY0; respectively. Through
minimizing the distances between the velocities and between the displacements, the formulae for
the initial condition transformation from the physical co-ordinates to the modal co-ordinates can
be derived.

2.1. Initial velocity transformation

The relationship between the physical and modal co-ordinates is given by Eq. (2) and the
difference in the initial velocity between the two co-ordinates is given by

D ’X0 ¼ ’X0 � P ’Y0; ð9Þ

where P is the mode shape matrix composed of the normalized modal vectors calculated in the
frequency region considered, ’X0 is the initial velocity in the physical co-ordinates and ’Y0 is the
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initial velocity in the modal co-ordinates and is transformed from the physical co-ordinates. If P is
composed of complete modal vectors of the system, Eq. (7) holds and D ’X0 ¼ 0; otherwise D ’X0a0:
To reduce the errors caused by approximation, it is more reasonable to minimize the mass

matrix weighted velocity distance, so that the velocity difference related to larger mass elements
between the two systems is expected to be smaller. The mass matrix weighted distance DSV

between the initial velocities from the two systems is given by

DSV ¼ ð ’X0 � P ’Y0Þ
TMð ’X0 � P ’Y0Þ; ð10Þ

where P is the incomplete mode shape matrix. At this stage, it is not yet known how the initial
velocity in the modal co-ordinates is transformed from the physical co-ordinates. The essential
condition to make DSV minimum can be derived by

@DSV

@ ’Y0
¼

@

@ ’Y0
’X
T

0M
’X0 � 2 ’X

T

0MP ’Y0 þ ’Y
T

0
’Y0

	 

¼ 2 ’Y0 � 2PTM ’X0 ¼ 0: ð11Þ

Thus, the initial velocity transformation from the physical co-ordinates to the modal
co-ordinates can be performed using

’Y0 ¼ PTM ’X0: ð12Þ

In fact, as

PTMP ¼ I; ð13Þ

P�1 ¼ PTM: ð14Þ

Here P�1 is the inverse matrix of P in a general sense, because P�1 is anM � N and P an N � M

matrix, P�1P ¼ I and PP�1aI:
It can be verified that the mass matrix weighted distance between the initial velocities from the

physical and modal systems is minimum when Eq. (12) is used, compared with using any other
method, for transforming the initial velocity from the physical to the modal co-ordinates.
Assuming that

#’Y0 is the initial modal velocity transformed using any other method, D #SV is the
corresponding initial velocity distance between the physical and modal systems and can be
represented by

D #SV ¼ð ’X0 � P
#’Y0Þ

TMð ’X0 � P
#’Y0Þ

¼ ½ð ’X0 � P ’Y0Þ þ Pð ’Y0 �
#’Y0Þ�TM½ð ’X0 � P ’Y0Þ þ Pð ’Y0 �

#’Y0Þ�

¼DSV þ 2ð ’X0 � P ’Y0Þ
TMPð ’Y0 �

#’Y0Þ þ ð ’Y0 �
#’Y0Þ

Tð ’Y0 �
#’Y0Þ; ð15Þ

where DSV is the initial velocity distance between the physical system and the modal system where
the initial modal velocity ’Y0 is calculated using Eq. (12). Examining the second term on the right
side of Eq. (15), it can be written as

2ð ’X0 � P ’Y0Þ
TMPð ’Y0 �

#’Y0Þ ¼ 2ð ’X
T

0MP� ’Y
T

0 Þð ’Y0 �
#’Y0Þ ¼ 0 ð16Þ

because of Eq. (12). Thus, Eq. (15) becomes

D #SV ¼ DSV þ ð ’Y0 �
#’Y0Þ

Tð ’Y0 �
#’Y0Þ ð17Þ
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This implies

D #SVXDSV ð18Þ

because ð ’Y0 �
#’Y0Þ

Tð ’Y0 �
#’Y0Þ is non-negative. Eq. (18) means that the mass matrix weighted

velocity distance between the two systems is minimum when Eq. (12) is used to transform the
initial velocity from the physical co-ordinates to the modal co-ordinates.

2.2. Initial displacement transformation

The formula for the initial displacement transformation can be derived by minimizing the
stiffness matrix weighted displacement distance between the physical and modal systems. The
stiffness matrix weighted distance between the initial displacements from the two systems is given
by

DSD ¼ ðX0 � PY0Þ
TKðX0 � PY0Þ: ð19Þ

The essential condition to make DSD minimum can be derived by

@DSD

@Y0
¼

@

@Y0
XT0KX0 � 2X

T
0KPY0 þ YT0 ½o

2�Y0
� �

¼ 2½o2�Y0 � 2PTKX0 ¼ 0: ð20Þ

Thus, the initial displacement transformation from the physical co-ordinates to the modal
co-ordinates can be performed using

Y0 ¼ ½o2��1PTKX0; ð21Þ

where ½o2��1 is diagonal:

o2
� ��1

¼

1

o21
1

o22
&

1

o2M

2
66666666664

3
77777777775
: ð22Þ

From the relationship between the natural frequency on and modal vector Un;

MUn ¼
1

o2n
KUn; ð23Þ

it can be derived that

PTM ¼ ½o2��1PTK: ð24Þ

Thus, Eq. (21) can be given as

Y0 ¼ PTMX0: ð25Þ

This is consistent with Eq. (12) for the initial velocity transformation. It can also be verified that
the stiffness matrix weighted distance between the initial displacements from the physical and
modal systems is minimum when Eq. (25) is used to transform the initial displacement.
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3. Calculation examples

3.1. Example 1: A three degrees of freedom (d.o.f.) system without damping

A 3-d.o.f. system shown in Fig. 1 is chosen to calculate vibration response to the initial
velocities at m1 and m2 using the modal analysis method. The initial conditions of the system are
assumed to be

X0 ¼ 0 and ’X0 ¼ 1 1 0
� �T

m=s:

There is no external excitation to the system. The system’s parameters are: m1 ¼ m3 ¼ 1 kg,
m2 ¼ 2 kg, k1 ¼ k4 ¼ 1N/m, k2 ¼ k3 ¼ 2N/m. The system’s natural frequencies are calculated
to be

o1 ¼ 0:66; o2 ¼ 1:73; o3 ¼ 2:14:
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Fig. 1. A 3-d.o.f. system.
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Fig. 2. Vibration displacements of the 3-d.o.f. system without damping due to unit initial velocities at m1 and m2: —,

exact solutions; ?, approximated solutions.
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In the approximated calculations using the modal analysis method, only the first vibration
mode is taken account of. The initial velocity in the modal co-ordinates is calculated using
Eq. (12). The results are shown in Fig. 2 and they are compared with the exact solutions. The
approximated solutions can be seen to be quite close to the exact solutions, especially for the
vibration at m2:

3.2. Example 2: A 3-d.o.f. system with damping

The same system and initial conditions are used as in example 1, but damping is added to the
modal system. The initial velocity in the modal co-ordinates is also calculated using Eq. (12). The
modal damping ratio is chosen to be 0.1 for each mode, although only the first vibration mode is
taken account in the approximated calculations. The results are shown in Fig. 3. It is seen that the
differences between the approximated and exact solutions are larger at the beginning, but they
become smaller and smaller when vibration decays with time.
Concerning the difference in vibration energy over a time interval due to the initial

displacement or velocity transformation between the physical and modal systems, it remains
unchanged in an undamped system because there are no energy input and dissipation. In a
damped system, however, the vibration energy difference between the physical and modal
systems becomes smaller and smaller, as the contribution from the residual modes which are
excluded from the response decreases due to the energy dissipation. As a result, the difference
between the approximated and exact response becomes smaller and smaller. This can be observed
from Fig. 3.
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Fig. 3. Vibration displacements of the 3-d.o.f. system with damping due to unit initial velocities at m1 and m2: —, exact

solutions; ?, approximated solutions.
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3.3. Example 3: Wheel/rail impact simulation

This example is from the practice of railway engineering. Wheel and rail running surfaces are
not perfectly smooth but contain discontinuities, such as rail joints, switches and wheel flats.
These discontinuities on the wheel and rail can generate large impact forces between the wheel and
track when wheels with flats subsequently rotate or wheels roll over a rail joint. As a consequence,
a transient impact noise is produced.
A relative displacement excitation model [1] schematically shown in Fig. 4 is used to calculate

wheel/track impact. In such a model, the wheel remains stationary on the rail and the
discontinuities on the wheel or rail rolling surfaces are effectively moved at the train speed V
between the wheel and rail as an excitation. The wheel interacts with the rail through a non-linear
Hertzian contact spring and loss of contact between the wheel and rail is allowed.
It is known from studies of rolling noise that the wheel modes containing a significant radial

component of motion at the contact zone dominate the noise radiation of the wheel/rail system in
the frequency region above about 2 kHz [2]. Fig. 5 shows the radial receptance (displacement
divided by force) of a railway wheel at the wheel/rail contact point, which is calculated using a
finite element model. It can be seen that the wheel modes in the frequency range up to 5 kHz are
significant.
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Fig. 4. Relative displacement excitation model for wheel/rail interaction.
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Fig. 5. Radial receptance of a railway wheel at the wheel/rail contact point.
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Based on the modal analysis, the radial receptance of a wheel at the contact point can be
given as

aW ¼
XM

n¼1

f2n
o2n � o2 þ i2znono

; ð26Þ

where, for the nth mode, fn is the normalized mode shape at the contact point, on is the natural
frequency, zn is the damping ratio and M is the number of the modes in the frequency region
considered.
With the normal contact force being applied to the wheel, the differential equation of motion

corresponding to each mode can be given as

.yn þ 2znon ’yn þ o2nyn ¼ fnðW � fcÞ; n ¼ 1; 2;y;M; ð27Þ

where yn is the modal displacement of the wheel,W is the static load due to the vehicle weight (W
is assumed to act at the wheel/rail contact point instead of the wheel center for simplicity) and fc is
the normal contact force between the wheel and rail. The wheel displacement xw at the contact
point is therefore composed of a superposition of all the modal displacement yn:

xw ¼
XM

n¼1

fnyn: ð28Þ

The normal contact force fc is non-linear against the contact deflection and it follows that

fc ¼
CHðxw � xr � rÞ3=2; xw � xr � r > 0;

0; xw � xr � rp0;

(
ð29Þ

where xr is the rail displacement at the contact point, r is the relative displacement excitation and
CH is the Hertzian constant. The rail displacement xr is calculated using an equivalent track
model represented by a fourth order differential equation [3]. The relative displacement excitation
r is chosen to be the center trajectory of a railway wheel rolling over a dipped rail joint [4], see
Fig. 6.
The initial velocities of the wheel and rail are assumed to be zero. The initial displacements

are the static displacements calculated under a vehicle loadW ¼ 100 kN. The initial displacement
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Fig. 6. Trajectory of a railway wheel center when it rolls over a dipped rail joint.
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of the wheel needs to be transformed from the physical co-ordinates into the modal
co-ordinates. As the modal vector and the mass matrix of the wheel are of very large
volume, for simplicity the initial potential energy of the wheel is assumed to be dominated
by the rigid body motion mode. This is because the rigid body displacement of the wheel
caused by the vehicle load W is much larger than the elastic deformations of the wheel
and thus the latter can be ignored. The initial modal displacement of the wheel is therefore
given as

y10 ¼
xw0

f1
and yn0 ¼ 0; n ¼ 2; 3;y;M;

where xw0 is the initial displacement of the wheel in the physical co-ordinates and f1 is the
normalized rigid body mode of the wheel at the contact point.
The fourth order Runge–Kutta method is used to simulate the wheel/rail non-linear impact,

although the wheel and track are linear. The wheel mass is 600 kg and its rolling speed is 120 km/h.
The rail type is UIC60 (about 60 kg/m) with medium stiffness supports [4]. Twelve flexible
modes up to 5 kHz and one rigid body mode of the wheel are taken account in the calcu-
lations. The simulation results are given in Fig. 7 in terms of the wheel/rail impact force
in both the time domain and the frequency domain. The high-frequency components
of the contact force due to the high-frequency modes of the wheel can be observed from
the force spectrum, where the troughs correspond to the peaks in the wheel receptance in
Fig. 5.
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Fig. 7. Wheel/rail interaction force when the wheel rolls over a dipped rail joint at 120 km/h.
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4. Conclusions

A vibration system’s response can be calculated using the modal analysis method. If the
system’s initial velocity or displacement is non-zero, they have to be transformed from the
physical co-ordinates into the modal co-ordinates using the mode shape matrix in order to work
out the modal responses. The formulae for initial velocity and displacement transformation using
incomplete modal vectors have been derived based on the methodology of minimizing the mass
and stiffness matrix weighted distance, respectively, between the velocities and between the
displacements from the physical and modal systems. Two simple calculation examples of a 3-d.o.f.
system with and without damping have been presented in which the initial conditions are
transformed using the derived formulae. The methodology of minimizing the velocity distance
and the displacement distance between the two systems for initial condition transformation is
verified to be effective by the calculation examples.
Although the formulae for initial velocity and displacement transformation are derived based

on an undamped system, they can also be used for damped systems. For damped vibration caused
by initial velocity or displacement, the energy difference between the physical and modal systems
becomes smaller and smaller due to the energy dissipation, and thus the difference between the
approximated and exact responses becomes smaller and smaller.
Finally, the initial condition transformation methodology is effectively applied to a wheel/rail

impact problem, in which a modal railway wheel is used to take account of the high-frequency
components of the wheel vibration.
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